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Abstract

Channel estimation is an important prerequisite for receiver design. In this paper we

present a semi-blind low complexity frequency domain based channel estimation algorithm

for multi-access OFDM systems. Our algorithm is based on eigenvalues interpolation and

makes a collective use of data and channel constraints. We exploit these constraints to

derive a frequency domain maximum a posteriori (MAP) channel estimator. Furthermore,

we develop a data aided (expectation maximization based) estimator incorporating frequency

correlation information. The estimator is further enhanced by utilizing the time correlation

information through a Forward Backward (FB) Kalman filter. We also explore various

implementation for the FB Kalman filter. The simulation results are provided validating the

applicability of the proposed algorithm.
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1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a technology that promises to meet the

high transmission demands of modern times. Since the last decade, OFDM has attracted con-

siderable attention and has been selected as the physical layer of choice for broadband wireless

communications systems ([1], [2], [3], [4]). The main reason for this interest is the substan-

tial advantage it offers in high rate transmissions over frequency selective fading channels like

robustness to multi-path fading and capability to control the data rate according to the trans-

mission channel [5]. The other main advantage of OFDM is simple receiver structure utilizing

a frequency-domain equalizer (FEQ) with only one complex multiplication per subcarrier to

mitigate frequency selectivity. As such, OFDM has found wide acceptance and application.

The aim of this work is to perform channel estimation in the frequency domain in multi-

ple access OFDM. Before introducing this work, let us look at previous approaches to channel

estimation. Numerous research contributions have appeared in literature on the topic of chan-

nel estimation in recent years. One way to classify these works is according to whether they

performed estimation in the time domain or the frequency domain.

A lot of researchers have opted for channel estimation in the time domain. A joint carrier

frequency synchronization and channel estimation scheme using the expectation-maximization

(EM) approach is presented in [6] while [7] used subspace tracking. In [8], a joint channel

and data estimation algorithm is presented which makes a collective use of data and channel

constraints. A joint frequency-offset and channel estimation technique for multi-symbol encap-

sulated MSE OFDM system is proposed in [9], while the authors of [10] presented a sequential

method based on carrier frequency offset and symbol timing estimation. The authors of [11]

estimated the channel based on Power Spectral Density (PSD) and LS estimation for OFDM

systems with timing offsets while [12] used implicit pilots for joint detection and channel es-

timation. A pilot aided channel estimation algorithm in the presence of synchronous noise by

exploiting the a priori available information about the interference structure was presented in
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[13].

Various techniques for channel estimation in the frequency domain have also been explored

in the past years. Authors of [14] apply phase shifted samples in the frequency-domain to an

interpolated LS to estimate the channel while [15] proposed to include a phase rotation term in

the frequency domain interpolation for better channel impulse response (CIR) window location.

The authors of [16] proposed a channel estimation using polynomial cancelation coding (PCC)

training symbols and frequency domain windowing. The authors presented a sub-band approach

to channel estimation and channel equalization is proposed in [17] while a low-complexity iter-

ative channel estimator is proposed in [18]. The minimum mean square error (MMSE) channel

estimation in the frequency domain is considered in [19] while authors of [20] explored delay

subspace-based channel estimation techniques for OFDM systems over fast-fading channels.

1.1 Disadvantage of performing channel estimation in time domain

Most channel estimation techniques estimate the channel in the time domain. The main reason

is that channel length is usually (much) less than cyclic prefix length and so the number of

parameters to estimate in the time domain is much less than the number of parameters in the

frequency domain leading to higher estimation accuracy. Another advantage of time domain

based estimation is that it allows us to make a collective use of underlying communication

structure; a structure induced by the constraints on the channel (time and frequency correlation)

and the data (cyclic prefix, finite alphabet constraint and coding). The collective use of these

constraints in turn allows us to reduce the training overhead [8].

Apart from that, time domain based estimate estimate is plagued by several disadvantages.

By performing the estimation in the time domain, we loose the diagonal structure of the channel.

Thus, instead of the diagonal frequency domain relationship1 (see equation (4) further ahead)

Y i = diag(X i)Hi + N i (1)
1The system model and input/outpus equations are developed further ahead in Section 2. We use some of

these equations here to motivate our work.
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in which the various equations are decoupled, we employ the time-frequency relationship

Y i = diag(X i)QP+1hi + N i = Xihi + N i (2)

which is no more diagonal (decoupled). This loss in transparency in return complicates channel

estimation and makes it more computationally complex. For example, while the estimation in

(1) is performed on a bin by bin basis according to

Ĥi(l) =
Yi(l)
Xi(l)

l = 1, 2, · · · , N

channel estimation in (2) requires size L + 1 matrix inversion

ĥi = (X∗
i Xi)−1X∗

i Y i

Moreover, since data detection is best performed in the frequency domain, estimating the channel

in the time domain makes it necessary to perform an extra IFFT operation (to obtain the

frequency domain estimate Ĥi from the time domain estimate ĥi and use it for data detection).

Thus, for data-aided channel estimation techniques, each channel estimation step requires one

such IFFT operation.

Apart from the computational complexity, performing channel estimation in the time domain

might be oversolving a problem. For example, in multiple access OFDM systems, like WiMAX,

users are not interested in the whole frequency spectrum, but only that part of the spectrum in

which they are operating. Moreover, even if some users were interested in estimating the whole

spectrum, many standards would not be able support that as there are not enough pilots to do

so.

1.2 Can we perform channel estimation reliably in the frequency domain?

The only problem with channel estimation in the frequency domain is the increase in the number

of parameter to be estimated [19]. If we can reduce the parameter estimation space, then we

can avoid the one disadvantage of frequency domain estimation as compared to time domain
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estimation. The frequency response of the channel is inherently limited by the degrees of freedom

of the time domain impulse response. How does this limited degree of freedom manifests itself in

the frequency domain? Figure 1 demonstrates the length 64 frequency response resulting from

a 16 tap channel with exponential decay profile similar to the one we employ in our simulations.

The figure shows that within a narrow enough band, the spectrum looks linear or quadratic.
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Figure 1: Channel Impulse Response in the Frequency Domain partitioned in four subchannels.

Thus the number of parameters needed to represent the CIR can be reduced. In Section 4, we

will show how to utilize this property to represent the CIR using the dominant eigenvalues.

This paper is organized as follows. Section 2 describes the OFDM system model. The

time domain channel estimator is reviewed in Section 3. Section 4 presents a new frequency

domain data aided parameter reduction model for channel estimation. Section 5 introduces

time correlation information to improve the receiver design. Section 7 discusses the simulation

results and Section 8 provides the concluding remarks.
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2 System Model

Figure 2 shows the block diagram of the system under consideration. The data bits, to be sent

over the OFDM system, are first fed to a convolutional encoder, punctured and then passed

through a random interleaver. The bit sequence thus obtained, is mapped to QAM symbols

using Gray code. The QAM symbols are then mapped to OFDM symbols at the data tones and

pilots are inserted at the pilot tones. Here we consider comb-type pilots as they are more robust

in fast fading channels than block-type pilots [21] (further discussion on pilot design is provided

in Section 7.4). We will use calligraphic notations (e.g., X ) for vectors in the frequency domain.

Now consider a sequence of T +1 such OFDM symbols X 0,X 1, · · · , X T to be transmitted. Each

Figure 2: Block Diagram

symbol X i (of length N), undergoes an IFFT operation to produce the time domain symbol

xi =
√

NQ∗X i, where Q is the N × N discrete Fourier transform (DFT) matrix given by

Q = [e−j 2π
N

(l−1)(m−1)] and the operator ∗ denotes conjugate transpose. The transmitter then

appends a cyclic prefix (CP) of length P and transmits the resulting super symbol (the CP serves

to mitigate the multi-path effect but the estimation of channel characteristics of fading channels

6



require densely spaced pilot tones specially for those channels with a small coherence bandwidth

[14]). The channel hi, of length L + 1 (≤ P + 1), remains fixed over any OFDM symbol and

associated cyclic prefix and varies from one symbol to the next according to a state-space model

hi+1 = Fhi + Gui h0 ∼ N (0,Rn), ui ∼ N (0, σ2
uI), (3)

The matrices F and G are a function of the doppler spread, the power delay profile and the

transmit filter, and thus the model in (3) captures both frequency and time correlation (for

details on the construction of these matrices, and a justification of this model, see [8]). The

subscript i shows the time dependence of the variables. At the channel output and after stripping

the CP, we obtain the time domain symbol yi. The input/output relationship of the OFDM

system is best described in the frequency domain as

Y i = diag(X i)Hi + N i = diag(X i)QP+1hi + N i (4)

where Y i and Hi are the length-N FFT’s of yi and hi, respectively, and N i is the additive

white Gaussian noise N (0, σ2I) . QP+1 is the matrix which contains the first P + 1 columns of

Q. The second line (4) follows from the FFT relationship

Hi = Q




hi

0


 = QP+1hi (5)

Alternatively, with Xi
∆= diag(X i)QP+1 we can write

Y i = Xihi + N i (6)

3 Channel Estimation in Time Domain: MMSE Estimator

When the channel obeys the I/O relationship (6), we estimate hi by maximizing the log-

likelihood function

ĥ
MAP
i = arg max

hi

{ln p(Y i|Xi, hi) + ln p(hi)} (7)
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The first term on the right hand side in the above equation is given by ln p(Y i|Xi,hi) =

−‖Y i −Xihi‖2
σ−2 . Assuming hi to be N (0, Rh), the second term on the right side of equation

(7) is given by ln p(hi) = −‖hi‖2
R−1

h

. The MAP estimate is then given by2

ĥ
MAP
i = arg min

hi

{
‖Y i −Xihi‖2

σ−2 + ‖hi‖2
R−1

h

}
(8)

As Xi is not completely known at the receiver, we can use (6) to obtain a pilot/output equation

that can be used for initial channel estimation. Let the index set Ip = {i1, i2, . . . , iLp} denote the

pilot locations within the OFDM symbol known a priori at the receiver. Also, let XIp denote

the matrix X pruned of the rows that do not belong to Ip. Then, the pilot/output equation can

be derived from the I/O relationship (6) as

YIp = XIph + N Ip (9)

where we removed the time dependence for notational convenience. Deriving the MAP estimator

for the above equation we get

ĥ = RhX∗
Ip

[σ2I + XIpRhX∗
Ip

]−1YIp
(10)

where Rh is the autocorrelation matrix of h. As the channel is assumed to be jointly gaussian,

so the MAP estimator is the same as the MMSE estimator for the same input and output

sequence.

4 Channel Estimation in Frequency Domain

4.1 A Parameter Reduction Approach

In this section we introduce the frequency domain based channel estimation algorithm. Our

starting point is to partition the frequency response into a number of sections each of length Lf

producing a total of d N
Lf
e sections3. Let the jth section of the frequency response be denoted by

2We use the weighted norm ‖h‖2Σ to denote h∗Σh.
3In a multi-access OFDM system, we can choose the section length to be the number of carriers allocated to

each user. However, the sections need not have equal length over the frequency response.
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H(j)
i . Then, from (4), the input/output equation that involves this section is given by

Y(j)
i = diag(X (j)

i )H(j)
i + N (j)

i (11)

where Y(j)
i , X (j)

i , H(j)
i and N (j)

i are the jth sections of Y i, X i, Hi and N i, respectively. Now let

I
(j)
p denote the pilot locations within this section, then the pilot/output equations corresponding

to (11) are given by

YIp
= diag(X Ip

)H + N Ip
(12)

where in (12) and thereafter we suppress the dependence on the section index j and on the time

index i for notational convenience. Here AIp denotes the matrix A pruned of the rows that

don’t belong to Ip.

Obviously, the pilots are not enough to estimate the elements of H. So we resort to model

reduction starting from the autocorrelation function of H, RH (where RH is the FFT of Rh).

To this end, consider the eigenvalue decomposition of RH,

RH =
Lf∑

l=1

λlvlvT
l

where λ1 ≥ λ2 . . . ≥ λLf
are the (ordered) eigenvalues of RH and v1, . . . ,vLf

are the corre-

sponding eigenvectors. We can use this decomposition to represent H as

H =
Lf∑

l=1

αlvl

where α = [α1, α2, . . . , αLf
]T is a parameter vector, to be estimated, with zero mean and

autocorrelation matrix Λ = diag(λ1, λ2, . . . , λLf
). We now represent H using the dominant

eigenvalues and treat the rest as modeling noise 4, i.e.

H = V dαd + V nαn (13)
4The cutoff between the parameters that are considered dominant and the ones that are considered as part of

the modeling noise depends on the relative values of the λ
′
js. In our simulations, we use the condition

λj

λj+1
> 5

to place our cutoff.
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Upon substituting (13) in (11), we obtain

Y = diag(X )V dαd + N + diag(X )V nαn = Xdαd + N ′
(14)

where Xd = diag(X )V d and N ′
= N + Xnαn with Xn = diag(X )V n. The noise N ′ includes

both the additive and modeling noise. We consider it to be zero mean white gaussian noise with

autocorrelation

RN ′ = RN + diag(X )V ndiag(λn)V ∗
ndiag(X )∗ (15)

Now equation (14) can be used to construct a pilot/output equation, similar to (12), as

YIp
= Xd,Ip

αd + N ′
Ip

(16)

Which can be used to estimate αd by maximizing the log likelihood function

α̂MAP
d = arg max

αd

{
ln p(YIp

|Xd,Ip
, αd) + ln p(αd)

}
(17)

The MAP estimate of parameter α is thus given by

α̂MAP
d = arg min

αd

{
‖YIp

−Xd,Ip
αd‖2

R−1

N′
+ ‖αd‖2

Λ−1
d

}
(18)

which simplifies to

α̂d = ΛdX
∗
d,Ip

[
RN ′ + Xd,Ip

ΛdX
∗
d,Ip

]−1
YIp

(19)

The resulting mean square error is given by

Re =
[
Λ−1

d + X∗
Ip

R−1

N ′XIp

]−1
(20)

The estimate of the jth section of the spectrum is then given by Ĥ = V dα̂d. The concatenation

of all d N
Lf
e sections produces the frequency domain based estimate of the frequency response Ĥ.

4.2 Iterative Channel Estimation using the Expectation Maximization Ap-

proach

Pilot based channel estimation, whether in the time domain or frequency domain, does not

make full use of the constraints on the data. One can thus implement iterative (data-aided)
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techniques for channel estimation [8]. A formal way to do so is by implementing the expectation

maximization (EM) algorithm which we discuss next.

4.2.1 The Maximization Step

In the previous subsection we find α̂d by maximizing the log likelihood function given by equation

(17). Since the input X (and hence Xd) is not observable, we can employ the EM algorithm

and instead of maximizing (17) we can maximize an averaged from of the log likelihood function.

Specifically, starting from an initial estimate α̂
(0)
d , calculated say using pilots, the estimate α̂d

is calculated iteratively with the estimate at the kth iteration given by

α̂
(k)
d = arg max

αd

{
EXi|Yi,α̂d

(k−1) ln p(YIp
|Xd,Ip

, αd) + ln p(αd)
}

(21)

which simplifies to 5

α̂MAP
d = arg min

αd

{
E‖[YIp

−Xd,Ip
αd‖2

R−1

N′
+ ‖αd‖2

Λ−1
d

}
(22)

Strictly speaking, the noise correlation RN ′ is itself dependent on the input due to the modeling

noise (see equation (15)). Hence in performing the expectation in (22), we need to take this into

account. Treating the general case is difficult, so we consider the following three cases for R−1
N ′ :

Case 1: RN ′ is a constant:

This happens when we ignore the modeling noise so that RN ′ = σ2I where the expectation in

(22) is taken with respect to Xd given Y and the most recent estimate αd. In this case RN ′

becomes independent of Xd and it would then be straight forward to carry the expectation in

(22). Specifically, upon completing the squares, (22) can be equivalently written as

min
αd

Y∗
i R

−1

N ′Y i −α∗dE[X∗
d]R

−1

N ′Y i −Y∗
i R

−1

N ′E[Xd]αd

+α∗dE[X∗
d]R

−1

N ′E[Xd]αd −α∗dE[X∗
d]R

−1

N ′E[Xd]αd

+α∗dE[X∗
dR

−1

N ′Xd]αd + α∗dΛ
−1
d αd

5the expectation is taken with respect to the input given the output and the most recent estimate α̂k−1
d . This

information is understood and dropped for notational convenience.
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which can be simplified to

α̂MAP
d = arg min

αd

‖Y −E[Xd]αd‖2
1

σ2
n

I
+ ‖αd‖2

1

σ2
n

Cov[X∗
d]

+ ‖αd‖2
Λ−1

d

(23)

Case 2: Taking Expectation of RN ′ :

Instead of ignoring the modeling noise, we can split the expectation in (22) into an expecta-

tion over RN ′ and an independent expectation taken over the rest of the terms i.e., we can

approximate (22) as

α̂MAP
d = arg min

αd

{
E‖[YIp

−Xd,Ip
αd‖2

E[RN′ ]
−1 + ‖αd‖2

Λ−1
d

}
(24)

Now the expectation of RN ′ is given by

E[RN ′ ] = σ2I + E[diag(X )V nΛnV ∗
ndiag(X ∗)] (25)

We show in Appendix A that this expectation can be expressed as

E[RN ′ ] = σ2I + E[D]V nΛnV ∗
nE[D∗] + Cov[D]diag(V nΛnV ∗

n)

where D = diag(X ) and where diag(V nΛnV ∗
n) is a diagonal matrix whose diagonal coincides

with the diagonal of the matrix V nΛnV ∗
n. The now averaged RN ′ does not depend on X any

more. Replacing RN ′ by its expectation, it is then straight forward to carry the expectation in

(24) which comes out to be

α̂MAP
d = arg min

αd

‖Y − E[Xd]αd‖2
E[RN′ ]

−1 + ‖αd‖2
Cov[D]diag(V nΛnV ∗

n)
+ ‖αd‖2

Λ−1
d

(26)

Case 3: X is constant modulus:

In the constant modulus case, it is possible to evaluate (22) exactly. Specifically, and starting

from the expression for the autocorrelation as RN ′ = σ2I + DV nΛnV ∗
nD∗ and we can write

R−1

N ′ = (σ2I + DV nΛnV ∗
nD∗)−1

= D−∗(
σ2

E I + V nΛnV ∗
n)−1D−1

= D−∗R−1

N ′′D
−1
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where RN ′′
∆= σ2

E I + V nΛnV ∗
n and where we used the fact that DD∗ = EI since the input is

constant modulus. With this in mind, we conclude that

X∗
dR

−1

N ′ = V ∗
dD

∗R−1
N = V ∗

dR
−1

N ′′D
−1

R−1

N ′Xd = D−1∗R−1

N ′′V d

and

X∗
dR

−1

N ′Xd = V ∗
dR

−1

N ′′V d

Thus, in the constant modulus case, (22) can be equivalently written as

α̂
(j)
d = arg min

αd

Y∗E[D−1∗]R−1
N ′′E[D−1]Y −Y∗E[D−1∗]R−1

N ′′V dαd

−α∗dV
∗
dR

−1

N ′′E[D−1]Y + α∗dV
∗
dR

−1

N ′′V dαd + α∗dΛ
−1
d αd

which upon simplification becomes

α̂MAP
d = arg min

αd

‖E[D−1]Y − V dαd‖2
R−1

N′′
+ ‖αd‖2

Λ−1
d

(27)

In the simulations further ahead, we compare the approximate solutions (23) and (26) with the

exact EM solution (27) for a constant modulus input. Simulations show that replacing R
′
N with

its expectation is almost as good as calculating the expectation exactly.

4.2.2 The Expectation Step

As we have seen above, the maximization step assumes the presence of some expectations. By

inspecting subsection 4.2.1, we see we need to calculate the following moments.

E[Xd], Cov[X∗
d], E[D], E[DBD∗], and E[D−1] (28)

Now as Xd = diag(X )V d = DV d we can see that we can express the moments of Xd in terms

of moments of D. Specifically we have that

E[Xd] = E[D]V d
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and

Cov[X∗
d] = E[XdX

∗
d]− E[Xd]E[X∗

d]

= E[D]V dV
∗
dE[D∗] + Cov[D]diag(V dV

∗
d)− E[D]V dV

∗
dE[D∗]

= Cov[D]diag(V dV
∗
d)

Moreover, we show in appendix A that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B) (29)

From above it follows that in order to calculate the expectations in (28), it is enough to calculate

the following three moments

E[diag(X )], Cov[diag(X )] & E[diag(X )−1] (30)

where the expectation is performed given the output Y and the most recent channel estimate

Ĥ. In carrying out these expectations, we will assume that the elements of X are independent.6.

With this in mind, it is easy to see that we can evaluate the moments in (30) and hence in (28)

by calculating E[X (l)], Cov[X (l)] = E[|X (l)|2]− |E[X (l)]|2, E[ 1
X (l) ]. Now assuming that X (l)

is drawn from the alphabet A = {A1, . . . , AM} with equal probability, it is can be shown that

[8]

E[X (l)|Y(l),H(l)] =

∑M
j=1 Aje

− |Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(31)

E[|X (l)|2|Y(l),H(l)] =

∑M
j=1 |Aj |2e−

|Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(32)

E[
1

X (l)
|Y(l),H(l)] =

∑M
j=1

1
Aj

e−
|Y(l)−H(l)Aj |2

σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(33)

6This is in general not true because the elements of H are not independent (as the elements of H are the

Fourier transform of the impulse response h). However, we continue to use this approximation as this maintains

the transparency of element-by-element equalization in OFDM.
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4.2.3 Summary of the EM Algorithm

Now let us summarize the EM based estimation algorithm developed so far.

1. Calculate the initial channel estimate Ĥ0 using pilots (18).

2. Calculate the moments of the input given the current channel estimate Ĥi and the output

Y using equations (31)-(33).

3. Calculate the channel estimate using either one of the methods (23), (26) or (27) outlined

in Section 4.2.

4. Iterate between step 2 and 3.

We can run the algorithm for a specific number of times or until some predefined minimum error

threshold is reached.

5 Using Time-Correlation to Improve the Channel Estimate

The receiver developed in the previous section performs channel estimation symbol by symbol.

In other words, the channel is block fading and hence is totaly independent from symbol to

symbol. In a practical scenario the channel impulse responses are correlated over time. In this

section, we will show how to use time correlation to enhance the estimate of αd. To this end,

let’s first develop a model for the time variation of the parameter αd.

5.1 Developing a Frequency Domain Time-Variant Model

Consider the block fading model in (3) and lets assume for simplicity that the diagonal matrices

F and G are actually scalar multiples of the identity, i.e. F = fI and G =
√

1− f2I where f

is a function of Doppler frequency (see [8]). We will use the time domain model in (3) to derive

a similar model for α. To this end, recall that Hi = QP+1hi. Thus, the jth section of Hi, H(j)
i ,
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is related to hi by

H(j)
i = Q

(j)
P+1hi (34)

where Q
(j)
P+1 corresponds to the jth section of QP+1, i.e., QP+1 pruned of all its rows except

those of the jth section. Now, we can replace H(j)
i by its representation using the dominant

parameters αd, to get

V dαd,i = Q
(j)
P+1hi

or

αd,i = V +
d Q

(j)
P+1hi

where V +
d is the pseudo inverse of V d. Multiplying both sides of (3) by V +

d Q
(j)
P+1 yields a

dynamical recursion for αd

αd,i+1 = F ααd,i + Gαui (35)

where F α = fI and Gα =
√

1− f2V +
d Q

(j)
P+1 and where E[αd,0α

∗
d,0] = Λd. Note that the

dependence of Gα and αd on j has been suppressed for notational convenience. We are now ready

to implement the EM algorithm to the frequency domain system governed by the dynamical

equation (35). As we have seen in section 4.2, the algorithm will consist of an initial estimation

step, a maximization step, and an expectation step.

5.2 Initial (Pilot-Based) Channel Estimation

In the initial channel estimation step, the frequency domain system is described by equations

(16) and (35), reproduced here for convenience.

YIp,i = Xd,Ip,iαd,i + N ′
Ip,i (36)

αd,i+1 = F ααd,i + Gαui (37)

Now given a sequence i = 0, 1, . . . , T of pilot bearing symbols, we can obtain the optimum

estimate of {αi,d}T
i=0 by applying a forward-backward Kalman to (36)-(37)(see [22]), i.e., by

implementing the following equations
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Forward run: Starting from the initial conditions P 0|−1 = Π0 and α0|−1 = 0 and for

i = 1, . . . , T, calculate

Re,i = RN ′ + Xd,Ip,iP i|i−1X
∗
d,Ip,i (38)

Kf,i = P i|i−1X
∗
d,Ip,iR

−1
e,i (39)

α̂i|i =
(
I −Kf,iXd,Ip,i

)
α̂i|i−1 + Kf,iY i (40)

α̂i+1|i = F αα̂i|i (41)

P i+1|i = F α

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗

α +
1
σ2

n

GαG∗
α (42)

Backward run: Starting from λT+1|T = 0 and for i = T, T − 1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

d,Ip,iK
∗
f,i

)
F ∗

i λi+1|T + Xd,Ip,iR
−1
e,i

(
Y i −Xd,Ip,iα̂i|i−1

)
(43)

α̂i|T = α̂i|i−1 + P i|i−1λi|T (44)

The desired estimate is α̂i|T . This gives us an initial estimate to run the data-aided part of the

algorithm with.

5.3 Iterative (Data-Aided) Channel Estimation

For this part, we use the whole data symbol and not just the pilot part. Thus, in this case our

system is described by equations (14) and (35) also reproduced here for convenience

Y i = Xd,iαi,d + N ′
i (45)

αd,i+1 = F ααd,i + Gαui (46)

If the data symbols Xd,i were known, we would have employed the forward-backward Kalman-

Filter (38)-(44) on the above state-space model. Since the input is not available, we replace

it by its estimate along an expectation maximization algorithm. Specifically, along the lines

developed in [8] we can show that the FB Kalman filter needs to be applied to the following
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state space model

Y i =




E[Xd,i]

Cov[X∗
d,i]

1
2


αi,d +




N ′
i

0


 (47)

αd,i+1 = F ααd,i + Gαui (48)

where the expectations in (47) are taken given the output Y i and most recent channel estimate

αd,i. The expectations that appears in (47) are calculated as we did in Section 4.2.2. In contrast

to the symbol by symbol EM algorithm of section 4.2, there are several ways of implementing

the EM iterations in the time-correlated multi-symbol case. In the symbol by symbol algorithm

of Section 4, there was one dimension to iterate against (channel estimation vs data detection).

When the channels are time correlated over several OFDM symbols as is the case here, there

are two dimensions we can iterate against:

1. We can iterate between channel estimation and data detection.

2. We could also iterate against time using the Kalman filter where the previous channel

estimate informs the subsequent channel estimate.

Depending on how we schedule iterations across these two dimensions, we get different receivers.

We discuss two such receivers here, the Cyclic and the Helix Kalman based receivers.

5.4 Cyclic FB Kalman

In the cyclic based Kalman, we initialize the algorithm using the FB Kalman implemented over

the pilot symbols. This is then used to initialize the data aided version, where the channel

estimate is used to obtain the data estimate, and that allows us to propagate the estimate to

the next symbol. The process is continued until the forward steps are completed followed by the

backward run. The EM steps are repeated again ( 2nd forward run followed by 2nd backward run

and so on). In other words, we iterate only once between channel estimation and data detection

before invoking the Kalman to move to the next symbol and so on. The iterations thus trace

circles over the OFDM symbols which motivates the name Cyclic Kalman.
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5.5 Helix based FB Kalman

The Helix based FB Kalman is a more general version of the Cyclic Kalman. The two filters are

initialized in the same way. However at each symbol, we iterate several times between channel

estimation and data detection before moving on the next symbol (whereas the cyclic Kalman

iterates once between the channel estimate and data estimate at each step). This allows us to

refine the channel estimate as much as possible before propagating it using the Kalman to the

next OFDM symbol. The iterations in this case draw a helix shape, hence the name.

5.6 Using Code to Enhance the Estimate

In any practical system, an outer code is usually implemented that extends over several OFDM

symbols. The outer code can be used to enhance the data aided channel estimate. Specifically,

following data detection, the code can be invoked to enhance the data estimate (through error

correction). Now the (hard) data obtained is more refined and hence can be used enhance the

channel estimate by employing the FB Kalman again. Our simulation shows that invoking the

code can have a profound effect on performance.

5.7 Forward Kalman Filter

One drawback of the FB Kalman implementation is the latency and memory involved as one

needs to store all symbols to perform the backward run. One way around that is to implement

the forward only Kalman which avoids the latency problem. The forward only Kalman thus

suffers as a result in performance and is not able to make use of the code to enhance the data

estimate.

6 Time Domain multiple access channel estimation

For fair comparison, we need to compare the frequency domain (LS and Kalman) receiver with

the time domain counter part. How do users estimate the channel in the time domain given
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their limited share of the spectrum.To describe this, we just need to write the input/output

equations seen by each user. The imput/output equation for the jth user is given by (see (11))

Y(j)
i = diag(X (j)

i )H(j)
i + N (j)

i . Now H(j)
i is related to the impulse response by (see (34))

H(j)
i = Q

(j)
P+1hi where as described in Section 5.1, Q

(j)
P+1 is QP+1 pruned of all rows that dont

belong to the jth section. So, we can write

Y(j)
i = diag(X (j)

i )Q(j)
P+1hi + N (j)

i (49)

Equation (49) can be used for initial time-domain estimate using pilots and for symbol-by-symbol

EM-based estimation. If we use in addition the dynamic recursion of (3) hi+1 = Fhi + Gui

we can implement the various kind of Kalman filters discussed in the previous section for time-

domain channel estimation. It is important to note that the computational complexity involved

in the time domain case is much higher than in the Eigen estimate as the significant eigenvalues

αd are less than the channel length.

7 Simulation Results

We consider an OFDM system that transmits 6 symbols with 64 carriers and a cyclic prefix of

length P = 15 each with a time variation of f = 0.9 . The data bits are mapped to 16 QAM

through Gray coding (except for Figures 3(a) and 3(b) which use a 4 QAM). The OFDM symbol

serves 4 users each occupying 16 frequency bins. In addition, the OFDM symbol carries 16 or 24

pilots equally divided between the users. The channel impulse response consists of 15 complex

taps (the maximum length possible). It has an exponential delay profile E[|h0(k)|2] = e−0.2k

and remains fixed over any OFDM symbol. Where specified, an outer code is used to provide

robustness. The outer code is 1/2 rate convolutional code. In what follows, we compare the

performance of frequency domain based channel estimation using various techniques for the both

the coded and uncoded cases. We also benchmark our method with the time domain method

briefly described in Section 6 (see [8] also).
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7.1 Effect of Modeling Noise

Figures 3(a) and 3(b) show the MSE and BER curves for the three cases considered in section

4.2 comparing the various treatment of the noise. We plot the Figures 3(a) and 3(b) for constant

modulus using 16 pilots. As evident from the graphs, the inclusion of the modeling noise improves

the result.We also note that the expectation of the noise and the exact solution have almost

comparable results.

7.2 EM based Least Squares

In order to see a fair comparison between the time domain and the frequency domain techniques

for a multiple access system, we compare the time domain LS estimate with the frequency

domain LS and LS with EM estimate. Figures 4(a) show the MSE while Figures 4(b) show the

BER performance for these methods for the uncoded case at 16 pilots.

7.3 Kalman Filter based Receivers

Figure 5(a) compares the BER performance of frequency domain Forward Kalman, Cyclic and

Helical Kalman filters with the time domain LS method and Helix Kalman for the uncoded case

at 16 pilots. As expected, we see that using Kalman filter improves the EM based estimate in the

frequency domain. We also see that Helix based Kalman performs better than other frequency

domain based techniques and that for the uncoded 16 pilot case, the frequency domain methods

fairs better than the time domain methods.

Figure 5(b) shows the same comparison for 24 pilots uncoded case. For the case of 24 pilots,

we note that though the time domain estimate methods perform better than frequency domain

methods, the performance of the frequency domain Helix Kalman is comparable to the time

domain Helix Kalman.

Figure 6(a) compares the BER performances of frequency domain channel estimation of

various Kalman filters with the LS and LS EM estimate for the 16 pilot case. Here we utilize
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the outercode to enhance the estimate. We see that the code enhancement technique is superior

to the rest of the techniques.

Figure 6(b) shows the result of the comparison of frequency domain Helix Kalman and coded

Kalman with the time domain Helix Kalman (16 pilots). We can see that for the multiple access

case, the frequency domain technique fairs better than the time domain estimation method,

while the coded Kalman outperforms all other techniques. In order to see a fair comparison

between the time domain and the frequency domain techniques for a multiple access system,

we compare the frequency domain Helix Kalman with the time domain Helix Kalman obtained

from the procedure outlined in Section 6.

7.4 Pilot Design

From Figure 4(b), it can be established that pilot density has a profound effect on the channel

estimation algorithm. It will be worthwhile to investigate the effect of pilot pattern on the

channel estimation algorithm as well. Here we find the optimal pilot pattern that minimizes the

MSE of the estimate for the pilot placement, given by (20), in the frequency domain. Consider

the case of 16 pilots, with an OFDM symbol of length 64. Considering 4 users, each user will

have access to 16 frequency bins. Assuming the pilots be equally divided among all the users,

the spectrum available to every user will have 4 pilots each. This means there are a total of

C16
4 = 1820 different combination of pilot patters that are possible. We perform an exhaustive

search and find that the minimum MSE occurs at equispaced combinations (Figure 7(a) and

Figure 7(b)).

Now we use either one of these two equispaced pilot patterns as the piloting scheme for all

OFDM symbols (called the non alternating scheme) or we can use both of these patterns such

that each alternate OFDM symbol has the same pilot pattern (called the alternating scheme). A

comparison of BER of uncoded equidistance non alternating and alternating schemes is shown

in Figure 7(c), while Figure 7(d) shows the same comparison for the coded case.
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8 Conclusion

We present an OFDM receiver design based on a semi-blind low complexity frequency domain

channel estimation algorithm for multi-access OFDM system. Opposed to the time domain

case which estimates the whole spectrum, we propose a frequency domain approach in which

the user estimates the part of the spectrum in which he operates. The advantage of this is

reduction in computational cost incurred by each user. Also, the user might not have access to

the entire spectrum. We estimate the channel parameters based on the eigenvalue technique,

greatly reducing the number of parameters to be estimated. The receiver uses the pilots to kick

start the estimation process and then iterates between channel and data recovery. Our receiver

utilizes data (finite alphabet set, code, transmit precoding, pilots) and channel (finite delay

spread, frequency correlation, time correlation) constraints. Thanks to the decoupled relation in

the frequency domain, data recovery is done on an element by element basis while the channel

estimation boils down to solving a regularized least squares problem. We propose to improve the

estimate making use of the time correlation information of the channel by relaxing the latency

requirement. For this purpose, we employ Cyclic and Helix based FB Kalman filters and use

the outer code to enhance the channel estimate. We make use of both the frequency and time

correlation which results in a relatively low training overhead. The simulation results show the

performance of our algorithm. Our results maybe extended to multiple antenna OFDM systems.

A Appendix

Now to calculate an expectation of the form E[DBD], which appears in (25), we note that by

our assumption different elements of D are independent making the expectation that involves

them in E[DBD] separable, i.e. for these terms, we have

E[DBD∗] = E[D]BE[D∗] (50)
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The identical forms, however, interact according to

E[DBD] = E[Ddiag(B)D] = E[DD∗]E[diag(B)] (51)

By combining (50) and (51), we see that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B) (52)
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Figure 3: Effect of modeling noise.
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Figure 4: EM based Least Squares comparison .
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Figure 5: BER comparison for various uncoded frequency domain methods.
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Figure 6: BER comparison for coded frequency and time domain methods (16 pilots).
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